Engineering Bispecific Antibodies for Cancer therapy – A Unique Perspective for Pediatric Solid Tumors Spanning Three Decades

Nai-Kong V. Cheung MD PhD

Enid A. Haupt Endowed Chair in Pediatric Oncology
Department of Pediatrics
Memorial Sloan Kettering Cancer Center
New York, NY, USA

©2017 Nai-Kong V. Cheung MD, PhD, 09-27-2017
Disclaimer

• This presentation, including examples, are provided for informational purposes only, the author makes no warranties, either express or implied.

• Information in this presentation, including samples, URL and other internet web site references, are subject to change without notice.

• Complying with all applicable copyright laws is the responsibility of the user.

• Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any other purpose, without the express written permission of the author.

• The names of actual companies and products mentioned herein may be trademarks of their respective owners.
Curing Metastatic Solid Tumor (neuroblastoma): An unmet need

Chemotherapy → Remission
Radiation Surgery

? How to prevent relapse
Antibody-based Immunotherapy: Fc dependent and independent mechanisms

Disialoganglioside: GD2

\[\text{Ceramide} \rightarrow \text{Gal-Cer} \rightarrow \text{Gal-Cer} \rightarrow \text{GM}_2 \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[\text{Glc-Cer} \quad \text{Gal-Glc-Cer} \quad \text{GM}_3 \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[\text{LacCer} \quad \text{GalNAc GalGlc Cer} \quad \text{GD}_3 \quad \text{GT}_3 \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\text{GA}_2 \quad \text{GA}_1 \quad \text{GA}_1 \quad \text{GA}_1 \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\text{GM}_2 \quad \text{GM}_1 \quad \text{GD}_2 \quad \text{GT}_2 \quad \text{GT}_1c \quad \text{GT}_1b \quad \text{GQ}_1c \quad \text{GM}_1b \quad \text{GD}_1a \quad \text{GQ}_1b \quad \text{GP}_1c \]

\[\text{Asialo-series} \quad a\text{-series} \quad b\text{-series} \quad c\text{-series} \]

Memorial Sloan Kettering Cancer Center
Anti-GD2 mAb 3F8 (mouse IgG3) targets exquisitely to neuroblastoma in patients
IgG based Immunotherapy of high risk stage 4 neuroblastoma:
(≥18 months of age at diagnosis or MYCN amplified tumor)

- 3F8 is a mouse IgG3 specific for antigen GD2
devolved by hybridoma technique
(It mediates ADCC and CMC)

- It was developed to treat high risk stage 4
neuroblastoma

- As a single antibody against a single antigen,
it has curative potential

- It causes acute pain side effects, with no long
term sequelae

- The addition of $^{131}\text{I}-3\text{F8}$ to naked 3F8 did not
improve survival.
Treating High Risk Metastatic Neuroblastoma:
anti-GD2 3F8 (mouse IgG3) + GM-CSF

87% CR of marrow disease, 69% CR by MIBG
Cheung et al., Int J Cancer 135: 2199-2205, 2014

Kushner et al., Oncoimmunology 4(7):e1016704. eCollection 2015

1st remission
Cheung et al., JCO 30:3264, 2012

Brian Kushner
Shakeel Modak

Memorial Sloan Kettering Cancer Center
Minimal residual disease (MRD) measurement by Quantitative RT-PCR: Early outcome predictor

(Marker panel: GD2 synthase, PHOX2B, CCND1, ISL1)

Dx → Induction Therapy +/- ASCT → 1st CR/VGPR; Primary refractory; 2nd remission → BM test

3F8 ± GM–CSF x 2 cycles → BM test → 3F8 ± GM–CSF x 2 years ± CRA x 6 cycles

Pre-immunotherapy

Post-2 cycles

Years from start of 3F8 immunotherapy

Proportion surviving progression-free

Marker panel negative

Marker panel positive

PFS

Marker panel negative

Marker panel positive

PFS

Cheung et al. JCO 33:755, 2015

Memorial Sloan Kettering Cancer Center
Compartmental radioimmunotherapy (cRIT) using intrathecal (intra-Ommaya) 131I-mAb is potentially curative for CNS metastasis.

Kramer et al. 2016
Empowering Antibodies

✓ Natural Killer cells
✓ T lymphocytes
2+2 platforms to build bispecific antibodies

Wu and Cheung, Pharmacology & Therapeutics 2017
Building next generation humanized antibodies
Combination immunotherapy and radioimmunotherapy

NK cells → T cell → Tumor

Fc-enhanced Antibody (+/- adoptive NK cells) ← IgG1 → Bispecific Antibody to retarget T cells (+/- ICI, +/- adoptive T cells)

Bispecific Antibody for PRIT (+/- radiation repair inhibitors)

DOTA-BsAb → Anti-CD3

T-BsAb

DOTA

Anti-DOTA

Memorial Sloan Kettering
Cancer Center
Using T–BsAb (hu3F8–BsAb) to drive T cells to target carbohydrates (e.g. ganglioside GD2)
In vitro properties of hu3F8-BsAb

- Mediates TDCC against GD2(+) tumors at femtomolar EC50, irrespective of tumor type
- $>10^5$ margin of safety for non-neuronal cells
- Induces immune synapse on T cells
- Mediates cytokine release (IFNγ, IL6, IL10, TNFα, IL2) only if GD2(+) tumors are present
- No Activation induced cell death (AICD), unlike CAR T cells

Xu et al., Cancer Immunol Res 3:266, 2015
Hoseini et al., Oncoimmunology, 2017, PMID: 28680755
In vivo properties of hu3F8-BsAb

- Drives T cell infiltration into GD2(+) tumors
- Ablates GD2(+) cell line tumors in humanized SCID mice
- Ablates GD2(+) PDX in humanized SCID mice
- Ablates GD2(+) murine tumors in huCD3 transgenic mice with no cytokine storm
- Overcomes PD1 or PDL1 in the tumor microenvironment (TME)
- No AIID or CD4:CD8 shift, unlike CAR T cells

Yu et al., Cancer Immunol Res 3:266, 2015
Hoseini et al., Oncoimmunology, 2017 (in press)
Besides GD2, T–BsAb can drive circulating T cells into tumors bearing endocytosing antigens (e.g. HER2) for tumor ablation

- Ablates HER2(+) cell line xenografts (breast CA and ovarian CA) in humanized SCID mice
- Ablates HER2(+) PDX in humanized SCID mice (breast CA and gastric CA)
- Overcomes PD1 and PDL1 in the TME
- At subtherapeutic doses, synergizes with anti–PDL1
Empowering Antibodies with Radioisotopes as Liquid Radiation
Radioactive particles break DNA
Radioactive particles (α, β, γ) differ in size, energy and path length

- **Gamma Particle**: 0.1–1 MeV, (Single DNA strand break)
- **Beta Particle**: 1,000–10,000 µm range, 0.1–1 MeV, (Single DNA strand break)
- **Alpha Particle**: 50–80 um range, 5–8 MeV, (Double DNA strand breaks)
Radioisotopes—the Payload for Liquid Radiation

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Physical $T_{1/2}$ (days)</th>
<th>Trade Name</th>
<th>Particles</th>
<th>Particle energy mean (keV)</th>
<th>Tissue Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radium–223</td>
<td>11.4</td>
<td>Alpharadin</td>
<td>Alpha</td>
<td>5850</td>
<td><0.1*</td>
</tr>
<tr>
<td>Actinium–225</td>
<td>10.0</td>
<td>–</td>
<td>Alpha</td>
<td>5935</td>
<td><0.1</td>
</tr>
<tr>
<td>Lead–212</td>
<td>0.4</td>
<td>–</td>
<td>Alpha</td>
<td>1335</td>
<td><0.1**</td>
</tr>
<tr>
<td>Astatine 211</td>
<td>0.3</td>
<td>–</td>
<td>Alpha</td>
<td>7450</td>
<td><0.1</td>
</tr>
<tr>
<td>Bismuth–213</td>
<td>0.03</td>
<td>–</td>
<td>Alpha</td>
<td>5982</td>
<td><0.1**</td>
</tr>
<tr>
<td>Strontium–89</td>
<td>50.5</td>
<td>Metastron</td>
<td>Beta</td>
<td>580</td>
<td>6</td>
</tr>
<tr>
<td>Iodine–131</td>
<td>8.0</td>
<td>–</td>
<td>Beta</td>
<td>610</td>
<td>0.8</td>
</tr>
<tr>
<td>Lutetium–177</td>
<td>6.7</td>
<td>–</td>
<td>Beta</td>
<td>497</td>
<td>0.7</td>
</tr>
<tr>
<td>Samarium–153</td>
<td>1.9</td>
<td>Quadramet</td>
<td>Beta</td>
<td>233</td>
<td>3</td>
</tr>
</tbody>
</table>

* Small bowel retention
** Kidney damage

Memorial Sloan Kettering Cancer Center
Why conventional IgG radioconjugates fail

Conventional Radioimmunotherapy

Pretargeted Radioimmunotherapy (PRIT)

Orcutt et al. Protein Eng Des Sel 23:221, 2010
Mol Can Ther 11:1365, 2012
The components for Multistep Targeting DOTA–BsAb
DOTA–BsAb Pretargeted Radioimmunotherapy (PRIT)

Step 1 (Day)
- Bispecific antibody

Step 2 (Hours)
- Hapten/Dextran clearing agent

Step 3 (Minutes)
- M-DOTA complex

M Affinity
Y 15.4 ± 2.0 pM
Lu 10.8 ± 2.5 pM

Memorial Sloan Kettering Cancer Center
Curing GD2(+) Neuroblastoma using DOTA–BsAb PRIT: No Toxicity at 33 MBq or 0.9 mCi 177Lu/mouse

<table>
<thead>
<tr>
<th>Tissues</th>
<th>cGy/MBq</th>
<th>cGy/mCi</th>
<th>AUC Tumor/tissue ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>0.6</td>
<td>22</td>
<td>142</td>
</tr>
<tr>
<td>Tumor</td>
<td>84.9</td>
<td>3141</td>
<td>1</td>
</tr>
<tr>
<td>Heart</td>
<td>0.7</td>
<td>26</td>
<td>121</td>
</tr>
<tr>
<td>Lung</td>
<td>3.5</td>
<td>129</td>
<td>24</td>
</tr>
<tr>
<td>Liver</td>
<td>2.1</td>
<td>78</td>
<td>40</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.0</td>
<td>74</td>
<td>42</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.9</td>
<td>33</td>
<td>94</td>
</tr>
<tr>
<td>Sm. Intestine</td>
<td>0.8</td>
<td>30</td>
<td>106</td>
</tr>
<tr>
<td>Lg. Intestine</td>
<td>2.1</td>
<td>78</td>
<td>40</td>
</tr>
<tr>
<td>Kidneys</td>
<td>3.7</td>
<td>137</td>
<td>23</td>
</tr>
<tr>
<td>Muscle</td>
<td>5.5</td>
<td>203</td>
<td>15</td>
</tr>
<tr>
<td>Bone</td>
<td>0.7</td>
<td>26</td>
<td>121</td>
</tr>
</tbody>
</table>

Cheal et al., Mol Cancer Therapeutics 13:1803, 2014
Curing GPA33(+) CRC using DOTA–BsAb PRIT: No Toxicity at 165 MBq or 4.4 mCi 177Lu/mouse

A. Graph showing tumor volume over days post-inoculation with different treatments.

B. Non-invasive nanoSPECT/CT (55 MBq/cycle).

C. Non-invasive 86Y PET.

For 3 cycle treatment, 165 MBq of 177Lu–DOTA–Bn

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Rads</th>
<th>TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood</td>
<td>150</td>
<td>93</td>
</tr>
<tr>
<td>tumor</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td>kidney</td>
<td>875</td>
<td>16</td>
</tr>
</tbody>
</table>

Memorial Sloan Kettering Cancer Center
Proof of Concept of DOTA–BsAb PRIT
5 different targets, 5 different cancer diagnosis

✓ GPA33 in Colorectal Cancer (CRC)
 Cheal et al., EJNMMI 43:925, 2016
 Cheal et al., J Nuclear Medicine 2017 (in press)

✓ GD2 in neuroblastoma
 Cheal et al., Mol Cancer Therapeutics 13:1803, 2014

✓ HER2 in Breast Cancer
 Cheal et al., World Molecular Imaging Congress, Vol 18, 2015

✓ CD20 in Lymphoma
 Green et al., Cancer Research 76:6669, 2016

✓ CEA in Carcinoma
 Yazaki et al., Protein Eng Des Sel 26:187, 2013
BsAb in Pediatric Cancers

- Further optimization of PK to improve therapeutic ratio

- Combination of T-BsAb and Immune checkpoint inhibitors

- Combination of DOTA-BsAb PRIT with inhibitors of DNA repair

- Understanding the tumor microenvironment
Disclosures

• 3F8, hu3F8 and hu3F8–BsAb were licensed to YmAbs Therapeutics, Inc. by Memorial Sloan Kettering Cancer Center (MSK)

• HER2–BsAb was licensed to Abpro, Inc. by MSK

• MSK and NK Cheung have financial interest in YmAbs Therapeutics, Inc. and Abpro, Inc.
Acknowledgements

- **Neuroblastoma Research Laboratory**
 - Irene Cheung
 - Mahiuddin Ahmed
 - Hong-fen Guo
 - Yi Feng
 - Jeong A. Park
 - Brian Santich
 - Maya Suzuki
 - Hoa Tran
 - Hong Xu
 - Linlin Wang
 - Zhihao Wu

- **Nuclear Medicine**
 - Jorge Carasquillo
 - Sarah Cheal
 - John Humm
 - Steven Larson
 - Jason Lewis
 - Neeta Pandit–Taskar

- **Small–Animal Imaging Core Facility**
 - Pat Zanzonico

- **Ped Oncology**
 - Ellen Basu
 - Brian Kushner
 - Shakeel Modak
 - Stephen Roberts

- **Ped NeuroOncology**
 - Kim Kramer

- **Ped Neurosurgery**
 - Mark Souweidane

- **Ped Surgery**
 - Michael LaQuaglia
 - Todd Heaton

- **Immunology**
 - Morgan Huse

- **CGP Facility**
 - Paul Chapman
 - Govindaswami Ragupathi
 - Mark Klang

- **Medical Oncology**
 - Sarat Chandarlapaty
 - Yelena Janjigian
 - HOPP program
 - Maurizio Scaltriti

- **Antitumor Assessment Core**
 - Elisa de Stanchina

- **Structural Biology**
 - Yehuda Goldgur
 - Barbara Ann Karmanos Cancer
 - Maxim Yankelevich

- **MIT**
 - Dane Wittrup

- **University of Virginia Health System**
 - Lawrence Lum

- **Eureka Therapeutics, Inc.**
 - Cheng Liu

- **Central Institute for Experimental Animals (Kawasaki, Japan)**
 - Mamoru Ito

Support

NIH, DOD, Band of Parents, Zev’s Fund, Arms Wide Open Childhood Cancer Foundation, William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research, and The Experimental Therapeutics Center of MSK, Geoffrey Beene Cancer Research Center, Kids Walk, Cookies for Kids Cancer, Catie Hoch Foundation, Katie Find a Cure Fund, and Robert Steel Foundation